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a b s t r a c t

Dynamics and control of a tether-assisted return mission of a re-entry capsule are con-
sidered. Efficiency of the braking process of the capsule depends on a deflection angle of
the tether from a local vertical before separating the capsule from the tether. The aim is of
this paper to find a tether length control law that allows to increase the deflection angle of
the tether from the local vertical. The control law is based on a principle of a swing. This
control law may be applied to the final phase to two possible options to perform a tether-
assisted deorbit maneuver: static and dynamic release. An approximate analytical solution
for the deflection angle from the local vertical is obtained for the control law. The
numerical simulations have shown that the application of the control law allows a
reduction in the required tether length of a tether-assisted deorbit maneuver. The pro-
posed control law can be applied to develop new space tethered systems.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Space tethers have received more attention in recent
decades, with many articles and books [1–3] available. The
fundamental paper by Beletsky and Levin [1] played an
important role in providing the basis for the study of
tethered system dynamics. Tethered systems offer
numerous benefits to modern spacecrafts. One central
advantage is that they use less fuel. Another advantage is
that tethers allow payload delivery from the Earth's orbit
[1–7]. There are two essentially different approaches to the
tether release with the re-entry capsule: static and
dynamic deployment [4]. Static deployment is the slow
release of the tether close to the local vertical. Dynamic
deployment means that the decrease of payload velocity
comes from the swinging of the tether impacted by the
Coriolis force acting on it [4]. Successful experiments of
ll rights reserved.
payload delivery occurred in 1993 and 2007 [5–7]. The
1993 mission, SEDS-1, used static deployment, while the
2007 mission, YES2, used dynamic deployment. The YES2
mission was demonstrated an ability to return a re-entry
capsule to the Earth using a tether. Using a swinging tether
releasing the re-entry capsule from an end of vertical
tether 30 km below mother satellite orbit provided brak-
ing the re-entry capsule.

The aim of this paper is to develop a control law for the
final phase of the deployment of the tether system for
payload delivery to Earth's surface. This leads to an
increase of a deflection angle of a tether from a local ver-
tical and hence reduces perigee altitude of a re-entry tra-
jectory of a capsule [7]. This control law is based on the
principle of a swing and the control law should be
applicable in cases where the initial deployment was
performed in static or dynamic modes. In both cases the
tether is required to reach the desired value of a deflection
angle of the tether from the local vertical.

Consider the essence of the proposed control law.
Suppose that after the initial deployment the tether is at
the point C as shown in Fig. 1. In other words, the tether
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Fig. 1. Swinging release of a capsule from a tether.
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has reached the leftmost position

αo0; _α¼ 0: ð1Þ

The amplitude of the deflection angle αm can be
increased, if we use the following control law

_l0 ¼ �λ _α; ð2Þ

where l0 is total length of the tether and λ40 is a constant
coefficient. A similar control law has been used in the tasks
of gravitational stability of a satellite [8] and of a mathe-
matical pendulum [9].

The physical nature of this phenomenon is as follows:
Suppose the attached capsule is at point C (Fig. 1) and the
conditions (1) are satisfied. According to the law (2) during
the reverse motion of the capsule from point C the tether
retracts _lo0. This gives rise to the Coriolis force
ΦC ¼ 2mcα̇l ̇ (mc is mass of the capsule) which increases the
speed of the capsule toward the local vertical. During the
reverse motion of the capsule from the right end position,
the tether begins to release _l40. In this case, the Coriolis
force increases the capsule velocity only in the opposite
direction. Because this phenomenon increases the tether
oscillation amplitude, the capsule should separate from
the tether at point A, when

α¼ 0; _α40: ð3Þ

We note that the tether should be stretched throughout
the motion.
2. Tethered system model

Consider two-dimensional motion of the tethered sys-
tem in the orbital plane. The tethered system consists of a
mother satellite, the capsule, and a viscoelastic tether
between the two (Fig. 1). The mother satellite and the
capsule are modeled as material points which have masses
mm and mc respectively.

We introduce the following assumptions:
1. The mass of the capsule significantly less than the mass
of the mother satellite

mc5mm: ð4Þ

2. The tether is weightless

mt ¼ 0: ð5Þ

3. The tether length l is much smaller than the mother
satellite orbital radius

l5R0 ¼
p

1þe cos θ
; ð6Þ

where e is orbital eccentricity, p is orbital parameter and θ

is true anomaly.
Tether tension force is expressed as

T ¼ EA
l0

l� l0ð ÞþC
l0
_l; ð7Þ

where EA is a stiffness of the tether, C is a damping
constant.

Taking into account the assumptions (4–6) equations of
the motion of the capsule relative to the mother satellite
can be written as

€αþ €θþ2
_l
l
_αþωð Þþ3

μ

R3
0

sin α cos α¼ 0; ð8Þ

mc
€l¼ 2mcω

2l cos 2αþmc _α
2l�T ; ð9Þ

_l0 ¼ �λ _α: ð10Þ
Where ω¼

ffiffiffiffiffiffiffiffiffiffiffiffi
μR�3

0

q
, μ is the gravitational constant of

the Earth.
For the convenience of analysis, the independent vari-

able can be changed from time t to true anomaly θ [10,11].
Then Eqs. (8–10) can be re-written as

α″þ 3
1þe cos θ

sin α cos αþ2
l0

l
� 2e sin θ

1þe cos θ

� �
α0 þ1ð Þ ¼ 0;

ð11Þ

l″� 2e sin θ

1þe cos θ
l0 � lα02� 1

N2 1þe cos θð Þ4
2g0l
R0

cos 2α

�

� EA
mcl0

l� l0ð Þ
�
þ C

mcl0N 1þe cos θð Þ2
l0 ¼ 0; ð12Þ

l00 ¼ �λα0; ð13Þ
where ð Þ'¼ dð Þ=dθ is derivative with respect to true
anomaly, N¼ n= 1þe2

� �3=2, n is the mother satellite's
average orbital angular velocity, g0 is gravitational accel-
eration of the mother satellite (Fig. 1). Note that Eq. (11)
coincides with the corresponding Eq. given by [10].

If the cable is considered inextensible then Eqs. (11–13)
reduced to one equation

α″þ 3
1þe cos θ

sin α cos α�2
λα0

l0
þ 2e sin θ

1þe cos θ

� �
α0 þ1ð Þ ¼ 0:

ð14Þ
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In this case, the tether tension force is

T ¼mc N2 1þe cos θð Þ4 λα″þ 2eλα0

1þe cos θ
sin θþα02l0

� ��

þ2g0l0
R0

cos 2α

�
: ð15Þ
3. Averaged equation and analytical solution

To find an approximate analytical solution of Eq. (14)
these additional assumptions should be introduced.

1. The mother satellite moves in a circular orbit

e¼ 0; _θ¼ω¼
ffiffiffiffiffiffiffiffiffiffiffiffi
μR�3

0

q
¼ const: ð16Þ

2. The control coefficient λ is much smaller than the
tether length

ε¼ λ

l0
51: ð17Þ

Taking into account the assumptions (16) and (17), we
can rewrite Eq. (14) as

α″þν2 sin α cos α¼ 2ε α0 þ1ð Þα0; ð18Þ
where ν2 ¼ 3.

If we set ε¼ 0 in Eq. (18) we obtain the unperturbed
equation

α″þν2 sin α cos α¼ 0: ð19Þ
Now we write the energy integral for Eq. (19)

α02

2
�ν2

4
cos 2α¼W : ð20Þ

Taking into account the Eq. (18) the energy integral (20)
may be differentiated

W 0 ¼ 2ε α0 þ1ð Þα02;
and averaging the right-hand side of this equation over

the period of the variable θ

Tθ ¼
I

dθ; ð21Þ

we get

W 0 ¼ 2ε
Tθ

I
α0 þ1ð Þα02dθ: ð22Þ

Solving Eq. (20) with respect to

α0ð Þ ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Wþν2

4
cos 2α

� �s
:

Eqs. (22) and (21) can be written as

W 0 ¼ 8ε
Tθ

Z αm

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Wþν2

4
cos 2α

� �s
dα; ð23Þ

Tθ ¼
I

dθ¼ 4
Z αm

0

dαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Wþν2

4 cos 2α
� �q : ð24Þ
The integrals in the right-hand sides of these equations
are elliptic integrals. The change of variable sin α¼
k sin φ k¼ sin αmð Þ

converts these integrals to the complete elliptic inte-
grals of the first and second kind [12]

K kð Þ ¼
Z π

2

0

dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þk2 sin 2φ

	 
r ; E kð Þ ¼
Z π

2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þk2 sin 2φ

	 
r
dφ:

This finally leads us to the following equations

W 0 ¼ 8ε
E kð Þ
K kð Þ� 1�k2

	 
� �
; ð25Þ

Tθ ¼
4
ν
K kð Þ:

From Eq. (20) we have

W α; _αð Þ ¼W αm; _α¼ 0ð Þ ¼ 2 sin 2αm�1¼ 2k2�1¼ 2x�1;

ð26Þ
where x¼ k2 ¼ sin 2αm is the new variable.

The variable substitution (26) in Eq. (25) gives

x0 ¼ 4ε
E

ffiffiffi
x

p� �
K

ffiffiffi
x

p� �� 1�xð Þ
" #

: ð27Þ

Eq. (27) is approximated by a cubic polynomial

dx
dθ

¼ � ε

8
x x2þ2xþ16
� �

: ð28Þ

Separating the variables in Eq. (28) and integrating it,
we get

4aε θ�θ0ð Þ ¼ ffiffiffi
a

p �a
� �

ln
ffiffiffi
a

p þ1þx
� ��

� ffiffiffi
a

p þa
� �

ln
ffiffiffi
a

p �1�x
� �þ2 ln xð Þ� sin 2αm

sin 2αm0
ð29Þ

where a¼ 17, αm0 ¼ αm θ0ð Þ
This solution establishes a relationship between the

amplitude of the tether oscillation αm and true anomaly θ.
4. Numerical analyses

In order to check the effectiveness of the control law
given by (2), several numerical techniques are used. The
numerical results are based on the numerical integration
of Eq. (14) using an explicit fourth-order Runge–Kutta
method.

The change in altitude of the capsule if cut from the
tether is given by [7]

Δh¼ Rp�R0 ¼
RA VAð Þ2

2μ�RA V2
A

�R0: ð30Þ

where Rp is a perigee height of a re-entry trajectory,
RA ¼ R0� lA, VA �ω R0� lA α0Aþ1

� �� �
, as shown in Fig. 1.

We choose YES2 mission [7] as an example for com-
parison with the proposed control law. It is known that for
the YES2 mission the change in altitude was

ΔhYES2 � �330 km; ð31Þ
when the amplitude αm ¼ 40 deg, the tether length
l¼ 30 kmand R0 ¼ 6645 km [7].
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The coefficient control λ, so that the change in altitude
was similar to YES2 mission. Table 1 presents parameters
of the tether system. The tether tension force was calcu-
lated by Eq. (15).

The initial conditions are

α0 ¼ �40 deg; α‘0 ¼ 0; l0 ¼ 25 km: ð32Þ
Table 2 shows the results of simulation for different

values of the coefficient control λ. Based on the data from
Table 2, we can make some conclusions:

1. The tether tension force does not exceed 2:04 N,
2. The tether length increases by not more than 0:4 km

and retracts by not more than 2:04km, when l0 ¼ 25 km,
3. The maximum speed of release of the tether is less than

2:0 m=s.

Note that if the control coefficient λ¼ 750 m, then the
tether length can be reduced to approximately 5 km as
compared with YES2 mission.

Consider behavior of the tether system under the
control law (2), taking into account the viscoelastic prop-
erties of the tether and orbital eccentricity. The tether
properties are approximate and are taken to be: stiffness
EA¼ 6000 N, damping constant C ¼ 4000 N s. The perigee
altitude is 249 km, and the apogee altitude is 285 km.
Thus, the orbit semimajor axis is 6645 km and the orbital
eccentricity is 0.0027 [7]. All other parameters are con-
tained in Table 1 and the initial conditions are given by
(32). Fig. 2 shows the results of numerical integration of
Eqs. (11)–(13). The change in altitude equals
Δh¼ �329:2 km for this numerical experiment. Fig. 2c
depicts that the tether tension force is less than 2N and the
tether remains stretched during the deployment process.
As can be seen in Fig. 2 and from Table 2, that the small
eccentricity e ¼ 0:0027 and the viscoelastic properties of
the tether does not lead to significant differences from the
results of the numerical integration of Eq. (14).

To illustrate the ability of the control law to swing the
tether from the nearly vertical position we take the fol-
lowing initial conditions

α0 ¼ �1deg; α00 ¼ 0; l0 ¼ 25 km: ð33Þ
Table 1
Parameters of the tethered system.

Parameter Value Parameter Value

Orbital radius R0 6645 km Mass of the mother satellite
mm

6530 kg

Eccentricity e 0 Mass of the capsule mc 12 kg

Table 2
The choice of the control coefficient λ.

Control coefficient λ;m 250
Change in altitude Δh; km �333.0
θ�duration of the deployment of the system θk ; rad 49.52
Maximum of the tether tension force Tmax ;N 2.01
Maximum rate of release (pull) tether l̇max ; m=s 0.49
Variation range of the tether length lmin; lmaxð Þ; km 24.50, 25.15
Fig. 3 shows the closeness of the numerical solution
obtained using the averaged Eq. (27) and the analytical
solution (29) to the numerical solution obtained using the
original Eq. (18).

the original Eq. (18), and the averaged Eq. (27) and
analytical solution (29) for λ¼ 750 m.
500 750 1000 1250
�334.7 �329.1 �323.5 305.4
26.17 15.72 10.67 5.56
2.04 1.97 1.90 1.69
0.98 1.42 1.81 1.99
23.97, 25.30 23.55, 25.35 23.16, 25.39 22.96, 25.24

Fig. 2. The dependence of the deflection angle α from true anomaly (a),
the dependence of the tether length from true anomaly (b), the depen-
dence of the tether tension from true anomaly (c).



Fig. 3. The dependences of the deflection angle α from true anomaly that
are found using.
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5. Conclusion

The control law for deployment of a tether-assisted
return mission of a re-entry capsule is proposed. The
control law is based on the principle of the swing. The
approximate analytical solution for the envelope of the
deflection angle of the tether from the local vertical is
obtained. The numerical simulations show that using of
the control law can reduce tether length to approximately
5 km as compared with YES2 mission. The orbital eccen-
tricity and viscoelastic properties of the tether are incor-
porated into the mathematical model of motion of the
tether system. The numerical modeling show that the
control law can be effective for the final phase of the tether
deployment where the initial deployment was performed
by static or dynamic modes.

In general, we believe that the above approach to
control of the tether deployment can provide good results
for a large variety of applications. Further research on the
subject should verify the tether dynamics in more detail.
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